Predicts values given new covariates using a tinyVAST model
Usage
# S3 method for class 'tinyVAST'
predict(
object,
newdata,
remove_origdata = FALSE,
what = c("mu_g", "p_g", "p1_g", "palpha1_g", "pgamma1_g", "pepsilon1_g", "pomega1_g",
"pdelta1_g", "pxi1_g", "p2_g", "palpha2_g", "pgamma2_g", "pepsilon2_g", "pomega2_g",
"pdelta2_g", "pxi2_g"),
se.fit = FALSE,
bias.correct = FALSE,
...
)Arguments
- object
Output from
tinyVAST().- newdata
New data-frame of independent variables used to predict the response.
- remove_origdata
Whether to eliminate the original data from the TMB object, thereby speeding up the TMB object construction. However, this also eliminates information about random-effect variance, and is not appropriate when requesting predictive standard errors or epsilon bias-correction.
- what
What REPORTed object to output, where
mu_gis the inverse-linked transformed predictor including both linear components,p_gis the sum of the first and second linear predictors (which only makes sense to inspect when using the Poisson-linked delta model),p1_gis the first linear predictor,palpha_gis the first predictor from fixed covariates informula,pgamma_gis the first predictor from random covariates informula(e.g., splines),pomega_gis the first predictor from spatial variation,pepsilon_gis the first predictor from spatio-temporal variation,pxi_gis the first predictor from spatially varying coefficients,p2_gis the second linear predictor,palpha2_gis the second predictor from fixed covariates informula,pgamma2_gis the second predictor from random covariates informula(e.g., splines),pomega2_gis the second predictor from spatial variation,pepsilon2_gis the second predictor from spatio-temporal variation, andpxi2_gis the second predictor from spatially varying coefficients.- se.fit
Calculate standard errors?
- bias.correct
whether to epsilon bias-correct the predicted value
- ...
Not used.
