Control parameters for tinyVAST
Usage
tinyVASTcontrol(
nlminb_loops = 1,
newton_loops = 0,
eval.max = 1000,
iter.max = 1000,
getsd = TRUE,
silent = getOption("tinyVAST.silent", TRUE),
trace = getOption("tinyVAST.trace", 0),
verbose = getOption("tinyVAST.verbose", FALSE),
profile = c(),
tmb_par = NULL,
gmrf_parameterization = c("separable", "projection"),
estimate_delta0 = FALSE,
getJointPrecision = FALSE,
calculate_deviance_explained = TRUE
)
Arguments
- nlminb_loops
Integer number of times to call
stats::nlminb()
.- newton_loops
Integer number of Newton steps to do after running
stats::nlminb()
.- eval.max
Maximum number of evaluations of the objective function allowed. Passed to
control
instats::nlminb()
.- iter.max
Maximum number of iterations allowed. Passed to
control
instats::nlminb()
.- getsd
Boolean indicating whether to call
TMB::sdreport()
- silent
Disable terminal output for inner optimizer?
- trace
Parameter values are printed every
trace
iteration for the outer optimizer. Passed tocontrol
instats::nlminb()
.- verbose
Output additional messages about model steps during fitting?
- profile
Parameters to profile out of the likelihood (this subset will be appended to
random
with Laplace approximation disabled).- tmb_par
list of parameters for starting values, with shape identical to
tinyVAST(...)$internal$parlist
- gmrf_parameterization
Parameterization to use for the Gaussian Markov random field, where the default
separable
constructs a full-rank and separable precision matrix, and the alternativeprojection
constructs a full-rank and IID precision for variables over time, and then projects this using the inverse-cholesky of the precision, where this projection allows for rank-deficient covariance.- estimate_delta0
Estimate a delta model?
- getJointPrecision
whether to get the joint precision matrix. Passed to
sdreport
.- calculate_deviance_explained
whether to calculate proportion of deviance explained. See
deviance_explained()