Control parameters for tinyVAST
Usage
tinyVASTcontrol(
nlminb_loops = 1,
newton_loops = 0,
eval.max = 1000,
iter.max = 1000,
getsd = TRUE,
silent = getOption("tinyVAST.silent", TRUE),
trace = getOption("tinyVAST.trace", 0),
verbose = getOption("tinyVAST.verbose", FALSE),
profile = c(),
tmb_par = NULL,
tmb_map = NULL,
gmrf_parameterization = c("separable", "projection"),
reml = FALSE,
getJointPrecision = FALSE,
calculate_deviance_explained = TRUE,
run_model = TRUE,
suppress_nlminb_warnings = TRUE,
suppress_user_warnings = FALSE,
get_rsr = FALSE,
extra_reporting = FALSE,
use_anisotropy = FALSE,
sar_adjacency = "queen",
barrier_stiffness = 0.01
)Arguments
- nlminb_loops
Integer number of times to call
stats::nlminb().- newton_loops
Integer number of Newton steps to do after running
stats::nlminb().- eval.max
Maximum number of evaluations of the objective function allowed. Passed to
controlinstats::nlminb().- iter.max
Maximum number of iterations allowed. Passed to
controlinstats::nlminb().- getsd
Boolean indicating whether to call
TMB::sdreport()- silent
Disable terminal output for inner optimizer?
- trace
Parameter values are printed every
traceiteration for the outer optimizer. Passed tocontrolinstats::nlminb().- verbose
Output additional messages about model steps during fitting?
- profile
Character-vector passed to TMB::MakeADFun and see description there. Fixed effects that are highly correlated with random effects can often be estimated faster (i.e., with fewer iterations) by adding them to
profile. The most common use-case isprofile = c("alpha_j","alpha2_j"). However, doing so will have a small impact on model estimates and predictions.- tmb_par
list of parameters for starting values, with shape identical to
tinyVAST(...)$internal$parlist- tmb_map
input passed to TMB::MakeADFun as argument
map, over-writing the versiontinyVAST(...)$tmb_inputs$tmb_mapand allowing detailed control over estimated parameters (advanced feature)- gmrf_parameterization
Parameterization to use for the Gaussian Markov random field, where the default
separableconstructs a full-rank and separable precision matrix, and the alternativeprojectionconstructs a full-rank and IID precision for variables over time, and then projects this using the inverse-cholesky of the precision, where this projection allows for rank-deficient covariance.- reml
Logical: use REML (restricted maximum likelihood) estimation rather than maximum likelihood? Internally, this adds the fixed effects to the list of random effects to integrate over.
- getJointPrecision
whether to get the joint precision matrix. Passed to
sdreport.- calculate_deviance_explained
whether to calculate proportion of deviance explained. See
deviance_explained()- run_model
whether to run the model of export TMB objects prior to compilation (useful for debugging)
- suppress_nlminb_warnings
whether to suppress uniformative warnings from
nlminbarising when a function evaluation is NA, which are then replaced with Inf and avoided during estimation- suppress_user_warnings
whether to suppress warnings from package author regarding dangerous or non-standard options
- get_rsr
Experimental option, whether to report restricted spatial regression (RSR) adjusted estimator for covariate responses
- extra_reporting
Whether to report a much larger set of quantities via
obj$env$report()- use_anisotropy
Whether to estimate two parameters representing geometric anisotropy
- sar_adjacency
Whether to use queen or rook adjacency when defining a Simultaneous Autoregressive spatial precision from a sfc_GEOMETRY (default is queen)
- barrier_stiffness
The ratio of local stiffness (the scale of diffusion rate and resulting decorrelation distance) for barriers relative to normal areas in the SPDE method when using
add_mesh_covariates. The defaultbarrier_stiffness = 0.01is the value from Bakka et al. 2019.
Value
An object (list) of class tinyVASTcontrol, containing either default or
updated values supplied by the user for model settings
References
Bakka, H., Vanhatalo, J., Illian, J., Simpson, D., Rue, H. (2019). Non-stationary Gaussian models with physical barriers. Spatial Statistics, 29, 268-288. doi:10.1016/j.spasta.2019.01.002
